Algebraic (Trapdoor) One-Way Functions and Their Applications
نویسندگان
چکیده
In this paper we introduce the notion of Algebraic (Trapdoor) One Way Functions, which, roughly speaking, captures and formalizes many of the properties of number-theoretic one-way functions. Informally, a (trapdoor) one way function F : X → Y is said to be algebraic if X and Y are (finite) abelian cyclic groups, the function is homomorphic i.e. F (x) · F (y) = F (x · y), and is ringhomomorphic, meaning that it is possible to compute linear operations “in the exponent” over some ring (which may be different from Zp where p is the order of the underlying group X) without knowing the bases. Moreover, algebraic OWFs must be flexibly one-way in the sense that given y = F (x), it must be infeasible to compute (x′, d) such that F (x′) = y (for d 6= 0). Interestingly, algebraic one way functions can be constructed from a variety of standard number theoretic assumptions, such as RSA, Factoring and CDH over bilinear groups. As a second contribution of this paper, we show several applications where algebraic (trapdoor) OWFs turn out to be useful. In particular: – Publicly Verifiable Secure Outsourcing of Polynomials: We present efficient solutions which work for rings of arbitrary size and characteristic. When instantiating our protocol with the RSA/Factoring based algebraic OWFs we obtain the first solution which supports small field size, is efficient and does not require bilinear maps to obtain public verifiability. – Linearly-Homomorphic Signatures: We give a direct construction of FDH-like linearly homomorphic signatures from algebraic (trapdoor) one way permutations. Our constructions support messages and homomorphic operations over arbitrary rings and in particular even small fields such as F2. While it was already known how to realize linearly homomorphic signatures over small fields (Boneh-Freeman, Eurocrypt 2011), from lattices in the random oracle model, ours are the first schemes achieving this in a very efficient way from Factoring/RSA. – Batch execution of Sigma protocols: We construct a simple and efficient Sigma protocol for any algebraic OWP and show a “batch” version of it, i.e. a protocol where many statements can be proven at a cost (slightly superior) of the cost of a single execution of the original protocol. Given our RSA/Factoring instantiations of algebraic OWP, this yields, to the best of our knowledge, the first batch verifiable Sigma protocol for groups of unknown order. ? Work done while at NYU.
منابع مشابه
One-Time Trapdoor One-Way Functions
Trapdoors are widely used in cryptography, in particular for digital signatures and public key encryption. In these classical applications, it is highly desirable that trapdoors remain secret even after their use. In this paper, we consider positive applications of trapdoors that do not remain secret when they are used. We introduce and formally define one-time trapdoor one-way functions (OTTOW...
متن کاملContinuous Leakage Resilient Lossy Trapdoor Functions
Lossy trapdoor functions (LTFs) were first introduced by Peikert and Waters (STOC’08). Since their introduction, lossy trapdoor functions have found numerous applications. They can be used as tools to construct important cryptographic primitives such as injective one-way trapdoor functions, chosen-ciphertext-secure public key encryptions, deterministic encryptions, et al. In this paper, we focu...
متن کاملA Trapdoor Permutation Equivalent to Factoring and Its Applications
Public key cryptography has been invented to overcome some key management problems in open networks. Although nearly all aspects of public key cryptography rely on the existence of trapdoor one-way functions, only a very few candidates of this primitive have been observed yet. In this paper, we introduce a new trapdoor one-way permutation based on the hardness of factoring integers of pq-type. ...
متن کاملA Classification of Lattice-based Trapdoor Functions
A trapdoor function is a one-way function with trapdoor, which is indispensable for getting a preimage of the function. In lattice-based cryptography, trapdoor function plays an important role in constructing the secure cryptographic schemes like identity-based encryption, homomorphic encryption, or homomorphic signature. There are three categories of trapdoor functions as standard trapdoor, lo...
متن کاملA New Rabin-type Trapdoor Permutation Equivalent to Factoring and Its Applications
Public key cryptography has been invented to overcome some key management problems in open networks. Although nearly all aspects of public key cryptography rely on the existence of trapdoor one-way functions, only a very few candidates of this primitive have been observed yet. In this paper, we introduce a new trapdoor one-way permutation based on the hardness of factoring integers of pq-type. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013